# Practice on Toph

Participate in exhilarating programming contests, solve unique algorithm and data structure challenges and be a part of an awesome community.

## Power and Mod

Exponentiation is a mathematical operation, written as b n , involving two numbers, the base b and the exponent n. When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases:

b^{n} = b × … × b (n times)

In computing, the modulo operation finds the remainder after division of one number by another (sometimes called modulus). Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a mod n) is the remainder of the Euclidean division of a by n. For instance, the expression “5 mod 2” would evaluate to 1 because 5 divided by 2 leaves a quotient of 2 and a remainder of 1, while “9 mod 3” would evaluate to 0 because the division of 9 by 3 has a quotient of 3 and leaves a remainder of 0; there is nothing to subtract from 9 after multiplying 3 times 3.

Now, you are given the value of a, b and m. print the value of

a^{b} mod m

#### Input

First line contains the number of test cases **T (1 <= T <= 10^4)**. Next T line contains three integers **a, b
and m (1 <= a, b <=10^9 and 1 <= m <= 2^64)**.

#### Output

For each test case print the answer of the problem.

#### Samples

Input | Output |
---|---|

2 2 3 4 3 4 5 | 0 1 |

This problem was authored for Inter Department Programming Contest 2016 at Jahangirnagar University and is being hosted on Toph per author’s request.

#### Bhadra

→

Login to submit